

Georgia

Standards of Excellence Curriculum Map

Mathematics

GSE Analytic Geometry

Richard Woods, Georgia's School Superintendent
"Educating Georgia's Future"

Georgia Department of Education

GSE Analytic Geometry Curriculum Map						
$1^{\text {st }}$ Semester					${ }^{\text {id }}$ Semester	
$\begin{gathered} \text { Unit } 1 \\ (6-7 \text { weeks }) \end{gathered}$	$\begin{gathered} \text { Unit } 2 \\ (2-3 \text { weeks }) \end{gathered}$	$\begin{gathered} \text { Unit } 3 \\ (4-5 \text { weeks }) \end{gathered}$	$\begin{gathered} \text { Unit } 4 \\ (2-3 \text { weeks }) \end{gathered}$	$\begin{gathered} \text { Unit } 5 \\ \text { (} 7-8 \text { weeks) } \end{gathered}$	$\begin{gathered} \text { Unit } 6 \\ (4-5 \text { weeks }) \end{gathered}$	$\begin{gathered} \text { Unit } 7 \\ (4-5 \text { weeks }) \end{gathered}$
Similarity, Congruence, and Proofs	Right Triangle Trigonometry	Circles and Volume	Extending the Number System	Quadratic Functions	Geometric and Algebraic Connections	Applications of Probability
MGSE9-12.G.SRT. 1 MGSE9-12.G.SRT. 3 MGSE9-12.G.SRT. 5 MGSE9-12.G.CO. 6 MGSE9-12.G.CO. 7 MGSE9-12.G.CO. 8 MGSE9-12.G.CO. 10 MGSE9-12.G.CO. 11 MGSE9-12.G.CO.12 MGSE9-12.G.GPE. 4	MGSE9-12.G.SRT. 6 MGSE9-12.G.SRT. 7 MGSE9-12.G.SRT. 8		MGSE9-12.N.RN. 2 MGSE9-12.N.RN. 3 MGSE9-12.A.APR. 1		MGSE9-12.G.GPE. 1 MGSE9-12.G.GPE. 4 MGSE9-12.G.MG. 1 MGSE9-12.G.MG. 2 MGSE9-12.G.MG. 3	MGSE9-12.S.CP. 1 MGSE9-12.S.CP. 2 MGSE9-12.S.CP. 3 MGSE9-12.S.CP. 4 MGSE9-12.S.CP. 5 MGSE9-12.S.CP. 6 MGSE9-12.S.CP. 7

These units were written to build upon concepts from prior units, so later units contain tasks that depend upon the concepts addressed in earlier units.
All units will include the Mathematical Practices and indicate skills to maintain.
*Revised standards indicated in bold red font.
 Grade 9-12 Key:
Number and Quantity Strand: RN = The Real Number System, Q = Quantities, CN = Complex Number System, VM = Vector and Matrix Quantities
Algebra Strand: SSE = Seeing Structure in Expressions, APR = Arithmetic with Polynomial and Rational Expressions, CED = Creating Equations, REI = Reasoning with Equations and Inequalities Functions Strand: IF = Interpreting Functions, LE = Linear and Exponential Models, BF = Building Functions, TF = Trigonometric Functions

MG = Modeling with Geometry
 to Make Decisions

Georgia Department of Education

Georgia Standards of Excellence Analytic Geometry Curriculum Map Rationale

Unit 1: Building on standards from Coordinate Algebra and from middle school, students will use transformations and proportional reasoning to develop a formal understanding of similarity and congruence. Students will identify criteria for similarity and congruence of triangles, develop facility with geometric proofs (variety of formats), and use the concepts of similarity and congruence to prove theorems involving lines, angles, triangles, and other polygons.

Unit 2: Students will apply similarity in right triangles to understand right triangle trigonometry. Students will use the Pythagorean Theorem and the relationship between the sine and cosine of complementary angles to solve problems involving right triangles.

Unit 3: Students will understand and apply theorems about circles, find arc lengths of circles, and find areas of sectors of circles. Students will develop and explain formulas related to circles and the volume of solid figures and use the formulas to solve problems. Building on standards from middle school, students will extend the study of identifying cross-sections of three-dimensional shapes to identifying three-dimensional objects generated by rotations of two-dimensional objects.

Unit 4: Students will address properties of rational and irrational numbers, rewrite expressions involving radicals, and perform operations on polynomials in preparation for working with quadratic functions later in the course.

Unit 5: Students will analyze quadratic functions. Students will investigate key features of graphs, solve quadratic equations by taking the square roots, factoring $\left(x^{2}+b x+c\right.$ AND $\left.a x^{2}+b x+c\right)$, completing the square, and using the quadratic formula. Students will compare and contrast graphs in standard, vertex, and intercept forms. Students will only work with real number solutions.

Unit 6: Students will verify algebraically geometric relationships of circles in the coordinate plane. Students will derive the equation of a circle and model real-world objects using geometric shapes and concepts.

Unit 7: Students will understand independence and conditional probability and use them to interpret data. Building on standards from middle school, students will formalize the rules of probability and use the rules to compute probabilities of compound events in a uniform probability model.

Georgia Department of Education

GSE Analytic Geometry Expanded Curriculum Map - $\mathbf{1}^{\text {st }}$ Semester

1 Make sense of problems and persevere in solving them.
2 Reason abstractly and quantitatively.
3 Construct viable arguments and critique the reasoning of others.
4 Model with mathematics.

Standards for Mathematical Practice
\qquad
.
6 Attend to precision.
7 Look for and make use of structure.
8 Look for and express regularity in repeated reasoning.
$\square 1^{\text {st }}$ Semester

Unit 1
Similarity, Congruence, and Proofs
Understand similarity in terms of similarity
transformations MGSE9-12.G.SRT.1 Verify experimentally the properties of dilations given by a center

a. The dilation of a line not passing through the center of the dilation results in a parallel line and leaves a line passing through the center unchanged.
b. The dilation of a line segment is longer or shorter according to the ratio given by the scale factor.
MGSE9-12.G.SRT. 2 Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain, using similarity
transformations, the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.
MGSE9-12.G.SRT. 3 Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar.

Prove theorems involving similarity

MGSE9-12.G.SRT. 4 Prove theorems about triangles. Theorems include: a line parallel to one side of a triangle divides the other two proportionally, (and its converse); the Pythagorean Theorem using triangle similarity.
MGSE9-12.G.SRT. 5 Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.
Understand congruence in terms of rigid motions
MGSE9-12.G.CO. 6 Use geometric descriptions
1^{51} Semest Define trigonometric ratios and solv Define trigonometric ratios and solv problems involving right triangles MGSE9-12.G.SRT. 6 Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles.
MGSE9-12.G.SRT. 7 Explain and use the relationship between the sine and cosine of complementary angles.
MGSE9-12.G.SRT. 8 Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.

Circles and Volume
Understand and apply theorems about

circles

MGSE9-12.G.C. 1 Understand that all
circles are similar.
MGSE9-12.G.C. 2 Identify and describe relationships among inscribed angles, radii, chords, tangents, and secants. Include the relationship between central, inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle.
MGSE9-12.G.C. 3 Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.
MGSE9-12.G.C. 4 Construct a tangent line from a point outside a given circle to the circle.
Find arc lengths and areas of sectors of circles
MGSE9-12.G.C. 5 Derive using similarity the fact that the length of the arc intercepted by an angle is proportional to the radius, and define the radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector.
Explain volume formulas and use them to solve problems

MGSE9-12.G.GMD. 1 Give informal

arguments for geometric formulas.
a. Give informal arguments for the formulas of the circumference of a circle and area of a circle using dissection arguments and informal limit arguments.

Unit 4

Extending the Number System Use properties of rational and irrational numbers.
MGSE9-12.N.RN. 2 Rewrite expressions involving radicals and rational exponents using the properties of exponents. (i.e., simplify and/or use the operations of addition, subtraction, and multiplication, with radicals within expressions limited to square roots).
MGSE9-12.N.RN. 3 Explain why the sum or product of rational numbers is rational; why the sum of a rational number and an irrational number is irrational; and why the product of a nonzero rational number and an irrational number is irrational.

Perform arithmetic operations on

polynomials

MGSE9-12.A.APR. 1 Add, subtract, and multiply polynomials; understand that polynomials form a system analogous to the integers in that they are closed under these operations.

Georgia Department of Education

of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.
MGSE9-12.G.CO. 7 Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.
MGSE9-12.G.CO. 8 Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions. (Extend to include HL and AAS.)
Prove geometric theorems
MGSE9-12.G.CO.9 Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints.
MGSE9-12.G.CO. 10 Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180 degrees; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point. MGSE9-12.G.CO. 11 Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.

Make geometric constructions

MGSE9-12.G.CO.12 Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line.
MGSE9-12.G.CO.13 Construct an equilateral
b. Give informal arguments for the formula of the volume of a cylinder, pyramid, and cone using Cavalieri's principle.
MGSE9-12.G.GMD. 2 Give an informal argument using Cavalieri's principle for the formulas for the volume of a sphere and other solid figures.
MGSE9-12.G.GMD. 3 Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.
Visualize relationships between two-
dimensional and three-dimensional objects MGSE9-12.G.GMD. 4 Identify the shapes of two-dimensional cross-sections of threedimensional objects, and identify threedimensional objects generated by rotations of two-dimensional objects.

Georgia Department of Education

Georgia Department of Education

GSE Analytic Geometry Expanded Curriculum Map - $2^{\text {nd }}$ Semester

Standards for Mathematical Practice

1 Make sense of problems and persevere in solving them.
2 Reason abstractly and quantitatively.
3 Construct viable arguments and critique the reasoning of others.
4 Model with mathematics.

5 Use appropriate tools strategically.
6 Attend to precision.
7 Look for and make use of structure.
8 Look for and express regularity in repeated reasoning.

$2^{\text {nd }}$ Semester

equations. Examples: Rearrange Ohm's law V = IR to highlight resistance R; Rearrange area of a circle formula A $=\pi r^{2}$ to highlight the radius r.

Solve equations and inequalities in one variable

MGSE9-12.A.REI. 4 Solve quadratic equations in one variable.
MGSE9-12.A.REI.4a Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x-p)^{2}=q$ that has the same solutions. Derive the quadratic formula from $\mathrm{ax}^{2}+\mathrm{bx}+\mathbf{c}=$ 0.

MGSE9-12.A.REI.4b Solve quadratic equations by
inspection (e.g., for $x^{2}=49$), taking square roots, factoring, completing the square, and the quadratic formula, as appropriate to the initial form of the equation (limit to real number solutions).

Interpret functions that arise in applications in terms of the

 contextMGSE9-12.F.IF. 4 Using tables, graphs, and verbal descriptions, interpret the key characteristics of a function which models the relationship between two quantities. Sketch a graph showing key features including: intercepts; interval where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.
MGSE9-12.F.IF. 5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function $h(n)$ gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.
MGSE9-12.F.IF. 6 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.
Analyze functions using different representations
MGSE9-12.F.IF. 7 Graph functions expressed algebraically and show key features of the graph both by hand and by using technology.
MGSE9-12.F.IF.7a Graph linear and quadratic functions and show intercepts, maxima, and minima (as determined by the function or by context).
MGSE9-12.F.IF. 8 Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.
MGSE9-12.F.IF.8a Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context. For example, compare

A, and interpret the answer in context.
MGSE9-12.S.CP. 7 Apply the Addition Rule, P(A or B) = $\mathbf{P}(A)+\mathbf{P}(B)-\mathbf{P}(A$ and $B)$, and interpret the answers in context.
and contrast quadratic functions in standard, vertex, and intercept forms.
MGSE9-12.F.IF. 9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one function and an algebraic expression for another, say which has the larger maximum.
Build a function that models a relationship between two quantities
MGSE9-12.F.BF. 1 Write a function that describes a relationship between two quantities.
MGSE9-12.F.BF.1a Determine an explicit expression and the recursive process (steps for calculation) from context. For example, if Jimmy starts out with \$15 and earns \$2 a day, the explicit expression " $2 x+15$ " can be described recursively (either in writing or verbally) as "to find out how much money Jimmy will have tomorrow, you add \$2 to his
total today." $J_{n}=J_{n-1}+2, J_{0}=15$

Build new functions from existing functions

MGSE9-12.F.BF. 3 Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.
Construct and compare linear, quadratic, and exponential models and solve problems
MGSE9-12.F.LE. 3 Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.

Summarize, represent, and interpret data on two

categorical and quantitative variables

MGSE9-12.S.ID. 6 Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.
MGSE9-12.S.ID.6a Decide which type of function is most appropriate by observing graphed data, charted data, or by analysis of context to generate a viable (rough) function of best fit. Use this function to solve problems in context.
Emphasize linear, quadratic andexponential models.

